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FOREWORD

The problems arising with proliferating stress corrosion
cracking (SCC) test methods and a need to relate various types ot
laboratory test results with each other and with service requirements
has long been recognized. Technical direction at Alcoa Laboratories
identified the situation as an industrial problem, and this
contracted effort was conceived (funded by NASA Langley with W. B.
Lisagor, monitor) with the objective of clarifying relationships
between various SCC testing techniques and providing guidance on
optimum characterization methodlogy for aluminum alloys. The program
was constructed in two phases. The first, Phase I, was to be a
review of the literature relating to: (a) the SCC performance of high
strength aluminum alloys, and (b) comparison of SCC characterization
by different methods. A prime objective of this survey was to aid in
formulating an experimental program, to be done in Phase II of this
contract, with the objective of determining the type or combination
of accelerated SCC test procedures most suitable for selection and

design of high strength aluminum alloys.

This report contains four technical progress reports submitted
in partial fulfillment of the contracted Phase I literature review.
These reports are close reproductions of the original technical
progress letters submitted during the contracted time frame. Each
report, or section, has its own conclusions or summary of salient
observations. A few major impressions of the findings in the

literature and the present state-of-the-art ot SC testing aluminum




alloys are presented in Part Vv ot this report, D. O. Sprowls

performed the literature review and is the principal author of this

report., Section III, on Mechanical Aspects of SCC Testing was
co-rauthored by D. O. Sprowls, R. J. Bucci and R. L. Brazill. The
final report was edited by R. J. Bucci and D. O. Sprowls. Review of

the manuscript by J. D, Walsh is gratefully acknowledged.

In a separate report covering the contracted Phase II effort,

an updated summary of the reviewed literature is presented, with

greater emphasis given to the mechanical aspects of SCC testing. Of
particular interest in the Phase II overview are sections on
materials selection, problems with state-of-the-art accelerated test
methods, and introduction to a new approach to smooth specimen
testing, "the breaking load method,"” which is viewed to hold
considerable promise as a much improved qguantitative approach for
assessing SCC behavior. Considering input from all of the above, the
Phase II experimental program proceeded with the objective of
advancing the breaking load method and to verify the claimed
advantages of this approach over current state-of-the~art SCC
characterization procedures. The results of this investigation are
presented in the Phase II final report, which was coauthored by D. O.

Sprowls, R. J. Bucci, B. M. Ponchel, R. L. Brazill and P. E. Bretz.




I. STATUS OF TEST METHOD STANDARDIZATION
FOR STRESS CORROSION CRACKING

By

D. O. Sprowls

First Technical Progress Report
Submitted in Partial Fulfillment of:

NASA CONTRACT NAS1-16424

A STUDY OF ENVIRONMENTAL CHARACTERIZATION
OF CONVENTIONAL AND ADVANCED ALUMINUM
ALLOYS FOR SELECTION AND DESIGN

PHASE 1
Review of the Literature

Reported For:
Contract Period Ending April 16, 1981




In this review of literature on stress-corrosion cracking
(SCC) of aluminum alloys, emphasis is being placed on newer test

techniques and advanced aluminum alloys.

During the 1960's two new test techniques involving different
mechanical factors emerged: one involving mechanically precracked
test pieces and the second involving constant strain rate tests.
Prior to 1965, the assessment ofi SCC was done with constant load
or constant strain tests of smooth and notched test pieces.

The impact of these new methods on SCC characterization is covered

in References 1-6.

The standardization of stress corrosion testing methods in
the U.S.A. was started in 1964 when ASTM Committee G-1 was formed
for the Corrosion of Metals, with subcommittee G01.06 on Stress-~
Corrosion Cracking and Fatigue. 1In the 1980 Annual Book of ASTM
Standards there are now twelve standards on stress corrosion
testing, eight of which are applicable to the characterization of
aluminum alloys (G30, G38, G39, G44, G47, G49, G58, and G64)
(Ret, 7). These involve testing wih various types of constant
strain or constant load tests of smooth specimens. The most
recent of these standards (G64-80), which is a Standard Classi-
fication of the Resistance to Stress-Corrosion Cracking of High
Strength Aluminum Alloys, is based c¢n service experience, if
available, or on laboratory tests of standard smooth specimens at
specified stress levels. With regard to other test methods, a
statement from that standard is quoted: "5.2 Other types of tests

using precracked specimens or dynamic laoding have promise as
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better understanding and standardization." (This is still true at

the time of this writing, August 31, 1984).

Specific sections of ASTM Subcommittee G01.06 have been
organized for the purpose of developing standard procedures for
the use of precracked specimens (Section 4) and dynamic testing
(Sertion 5). Work in this direction, including round robin

testing, is in progress.

The ASTM is also involved with the International Standards

Organization (ISO/TC 156) on Corrosion of Metals and Alloys

through WG2 on Stress Corrosion Cracking. Several ASTM documents

are under consideration for acceptance as ISO standards.

alternative or supplementary methods, but they presently require

g <
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NECESSARY CONDITIONS FOR SCC

Stress corvosion cracking (SCC) is a time dependent process that
involves the interaction of sustained tensile stress and a
corrodent at the surface of a metallurgically susceptible
material (Figure 1). All four of the necessary conditions must
be simultaneously present and the process is synergistic; i.e.,
the damage due to SCC is greater than the additive effects of
the individual conditions. SCC is recognized as a potential
problem with various alloys and tempers of all structural metals

(ll 2)0

With aluminum, metallurgical susceptibility is confined to tre
higher strength alloys in certain tempers. The cracking
proceeds along an intergranular path* until the strength of the
part is reduced to the point where fracture may occur. Because
thick sections of most high strength aluminum alloy wrought
products have a directional grain structure, the resistance to
SCC of a susceptible alloy and temper also is influenced by the
direction of stressing relative to the macrostructure (3-7).

This is illustrated for 7075-T651 rolled plate in Figure 2.

SCC in service can result in premature failure because it
usually zccurs at nominal stress levels far below the

* wWhile transgranular SCC has been recognized under certain
conditions in laboratory tests, this mode has not been

identified in the historical cases of SCC in service (8).
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engineering yield strength of the product. Unlike (corrosion)

fatigue cracking which only propagates during cyclic operating

loads, SCC can continue under the driving force of sustained
residual tensile stress. Theoretically the time to failure by
SCC can be lengthened, or the cracking even prevented by
lowering the tensile stress; put for a highly susceptible
material, loaded in the short transverse direction, the stress
must be reduced to impractically low values. The interaction
petween sustained tensile stress and the metallurgical
susceptibility of the material is illustrated in Figure 3 by tne
comparative performance of different tempers of 7075 alloy plate

(8).

SCC will not occur in a vacuum Or in a dry atmosphere (less than
about 0.1 per cent relative humidity (5). SCC can occur in
ordinary environments with water being the essential ingredient,
present as vapor in the atmosphere and as liquid in aguedus oOr
organic solutions. Both the initiation and propagation of sCcC
in natural environments are accelerated by increase in moisture,
temperature, chlorides (traces of which are present almost
everywhere) and various industrial contaminants. Further

discussion of environmental factors is given in Section IV.




In estimating the probability ot an SCC problem in a structural

component, i. 1is necessary to consider the fol!lowing (9):

(a) The material -
Alloy
Temper

Product form (plate, extrusion, forging, ...)
Section size (thickness)

(b) Magnitude of sustained tensile stress -

Residual stress at the surface of finish machined part
Fabrication and assembly stresses
Service stresses (design)

(c) Direction of sustained tensile stress relative to grain
orientation in the component.

(d) Geometry of the component and stress profile through the
thickness.

(e) Nature of the environment and degree of surface protection.

B. SCC SERVICE FAILURES

Most instances of SCC failures of aluminum alloys in service are
found in aircraft components where high strength alloys are used
extensively. Prior to World War II, the mill product forms and
construction methods used in metal aircraft seldom created
potential SCC conditions. Pressed-in bushings represented about
the only components occurring frequently in normal design that
required attention with respect to stress corrosion. Therefore,
SCC occurred infrequently and, for the most part, designers and

builders of high strength aluminum structures were not

accustomed to preventing it. The few SCC occurrences were

diagnosed and the problems solved with little fanfare (10-12).



After World War II (during the 1940's - '60's), increasing

numbers of stress corrosion problems appeared in aerospace
vehicles (13-17). The following material was excerpted from an
extensive survey of failure reports summarized by Speidel (17):
"We have plotted (Figure 4) the estimated total number of stress
corrosion service failures which occurred with aerospace
products in Western Europe and North America vs. the year in
which these failures were reported. The data ... have been
extracted from over three thousand individual failure reports
from six aerospace companies and a number of government agencies
and research laboratories in the U.S. and five countries in
Western Europe. The SCC service failures have been observed
with such items as small aircraft (the majority of failures)
helicopters, jet aircraft, and rockets. Only significant
failures are reported (e.g., SCC of a big forging is one
failure, SCC of ten identical bolts is also listed as one
failure). The majority of all reported failures of most fleets
was included in the statistic but a certain amount of extrapo-
lation was necessary to estimate the total number of failures,
since it is impossible to get all failure reports. Moreover, |

all classified information is excluded, and of course all

failures that were never reported. Apart from that, the order
of magnitude, the trend and the relative number of failures for }
the various alloy systems is considered to be correct and the

following conclusions can be drawn from Figure 4:

- 11 -




"The number of stress corrosion service problems rose from 1969
until 1968, and it may be interesting to speculate on the
reasons that caused a reversal of this trend in 1969 and 1970.

Among the possibilities:

(1) designers have learned from their failures and introduced
less susceptible alloys, better surface protection, inhibited

environments, and reduced sustained stresses;

(2) research and development efforts have paid off and provided

better alloys as well as a greater awareness of the problem;

(3) the declining market situation in the aerospace industry

has resulted in less aerospace products and thus less failures.”

"It should also be emphasized that in 1970 the number of stress
corrosion service failures with high strength alloys was greater

than in 1965."

"In addition, it is important to point out that the service

failures listed (Figure 4) almost never resulted in crashes or

other catastrophic vehicle failures. The vast majority ot the

SCC failures was of structural parts which were routinely

replaced during inspction and maintenance. However, the

failures resulted in significant economic losses, due to the
cost of replacement and (often more significant) due to the cost

of down time."
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"Specific Causes for SCC Service Failures:

"A more detailed analysis of the thousands of failure
reports upon which Figure 4 is based, has provided the

following information:

"Materials:
"Alloys 7079-T6, 7075-T6, and 2024-T3 contributed to more
than 90 percent of the service failures of all high-strength

aluminum alloys.

"SCC Crack Initiation Sites:

"The distribution of known initiation sites is given in
Table 1. The variety of sites and causes for SCC crack
initiation makes it appear a hopeless task to fully protect
against SCC by surface treating a structure which is built

with inherently susceptible materials. This points out the

necessity to reduce the growth rate of stress corrosion

cracks to a level low enough that cracks do not become

critical during the lifetime of a structure.

"Sources of Stresses Causing Stress Corrosion Crack

Propagation:

"These are listed in Table 2. Obviously, residual stresses
from heat treatment and fabrication are by far more frequent
causes of SCC than service stresses. This is partly because
most SCC failures occurred with large forgings where

residual stresses are unavoidable."

- 13 -




"The reason why actual stress corrosion service failures

with high-strength aluminum alloys occur almost exclusively
on parts with thick sections is the well known combination
of grain flow during processing and the direction of
residual and applied load in service. During forging the
grains are flattened in the parting plane, and during
rolling the grains are flattened in the plane of the plate.
The resulting highly directional grain shape is not changed
during subequent heat treatment, because minor constituents
such as 2r, Cr, and Mn form small particles of intermetallic
phases which prevent the large-angle grain boundaries from
moving during solution heat treatments. In thin gage
material like sheet, there is normally no stress applied in
the short transverse section (i.e., in the direction perpen-
dicular to the plane of the sheet). Thus, intergranular SCC
cracks cannot grow easily along the grain boundaries, the
majority of which are in the plane of the sheet. 1In thick
sections, on the contrary, significant residual and service
stresses can exist perpendicular to the preferred plane of
the grain boundaries, which explains why stress corrosion

cracks are mostly observed in thick sections."

Specific examples of typical service failures are illustrated in
Figures 5-10. The spool shown in Figure 5 is from a fishing reel
used for salt water fishing. The use of alloy 2024-T4 was not

intended; when the cracked reel was received for examination it was

- 14 -




reported to be 6061-T6. If the rod stock had been 6061-T6 (SCC
resistant alloy) or 2024-T351 (stress relieved); this failure would
not have occurred. Another example of a failure from similar cause
is shown in Figure 6. Figure 7 illustrates a failure caused by
residual stresses produced by fabrication and procedures to avoid the
problem. Fortunately in this instance the potential service failure
was discovered by a laboratory simulation test of the intended
procedure. Examples of typical failures caused by installation
stresses are sketched in Figures 8 and 9. 1In the latter cases, it is

also shown how short transverse stresses can be developed in

unexpected situations when thin parts are machined out of relatively

thick parts. Residual stresses produced in welded assemblies also
have caused SCC as shown in Figure 10 along with procedures for

avoiding failure.

The greatest danger arises when residual, assembly, and service
stresses combine to produce high sustained tensile stress at the
metal surface (18). Theoretically, one way to avoid SCC of
suscepi:ible material is to control the stress at a safe level.
Several approaches are available through proper design, fabrication
and assembly practices. It is good practice to pay close attention
to all of these, even when alloys with improved resistance to SCC are

used.




SERVICE STRESSES (DESIGN STRESSES)

Design stresses have not caused SCC in aluminum alloy
structures, except in assemblies where the part is held under
high tensile load on an »around-the~-clock" basis. Examples
involve interference fit bushings and fasteners, clamps, and
hydraulic fittings. Care must be exercised when products with
appreciable susceptibility to SCC are used in such components.
Stresses from these sources are different from other installa-
tion stresses in that control of the applied stress is

practicable.

In general, the designer of high strength structures in aluminum
has no problem with regard to SCC as far as the external design
loads are concerned, because the primary loading is usually in
the highly resistant longitudinal or long transverse grain
orientation. Moreover, other design criteria, especially the
fatigue requirements, generally will ensure that the operational
stresses will not be high enough to promote SCC failure. Most
fatigue loads for which structures are designed are of
relatively short duration and do not contribute significantly to
SCC. However, there are some kinds of components, such as
hydraulic cyclinders, which must endure cyclic loading
superimposed on a sustained load. In such situations, the

contribution of the intermittent loading must be taken into
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consideration. Laboratory tests of hydraulic cyclinders have
shown that SCC may occur under cyclic loading at low
frequencies, with both SCC and corrosion fatigue interacting to
produce failures in shorter times and fewer cycles than for

either phenomenon alone (19).

It is conceivable that as fabrication practices are improved to
minimize residual stresses in structures, thern the operational
stresses may become of increased concern. if a "threshold
stress" above which failure will occur by SCC can be identified
for a given component, then this must be considered among other

design criteria.

PRESENT DESIGN PHILOSOPBIES FOR AVOIDING SCC

Two basic design concepts which found original application as
safeguards against metal fatigue also are applicable to SCC
failures. A brief comparison of these two different approaches
is given here because the design concept to be applied to a
particular structure can influence the strategy for avoiding SCC

(20).

l. Safe Life

The safe-life concept is the one most often considered
applicable to avoiding SCC problems in high strength
aluminum alloy structures. Several observations derived

from service experience have contributed to this approach:

- 17 -




{(a) SCC in service generally has resulted from residual and

assembly stresses (non-design) acting in the short
transverse grain orientation, and may propagate in
directions unrelated to the service loads; (b) the magnitude
of such unplanned stresses is generally unkno#n, and the
crack tip stress intensity factor usually changes as the
crack extends; it can either increase or decrease, depending
upon the type of loading:; (c) SCC propagation rates in
specific components are far less predictable than in the
case of fatigue; (d) materials that have been involved in
service SCC problems are capable of developing relatively

high SCC propagation rates.

Traditionally, few attempts have been made to separate
component failure into initiation and propagation stages.
Discovery of SCC in a part, regardless of whether unstable
Eracture has occurred, usually has led to the retirement of
that part. Thus, in the safe-life design concept, based on
the premise that the total life of a part consists primarily

on the initiation of a visible crack, the strategy is to

prevent cracks from forming. The design and materials

selection rely heavily on closely relateu service experience
and comparison of accelerated coupon-type test results,

usualiy of statically loaded smooth specimens.

- 18 -
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Damage Tolerance

For fracture control in high-performance aircarft,
increasing use is being made of the damage tolerant approach
by which design concepts may be qualified as eitier "slow
crack growth" or "fail-safe"structures (21). Initial flaws
are assumed to exist as a result of manufacturing and
processing operations. Given a crack-like flaw
corresponding to the maximum size escaping reliable
detection, life of the part is assumed to be spent
propagating this flaw to the critical size which resui-s in
fracture. The damage tolerance evaluation of a structure is
intended to ensure that, should cracking occur, the
remaining structure can function until the damage is
detected and remedied. The general design strategy,

therefore, is to select materials, configurations, and

stress levels that provide a slow rate of crack propagation

while maintaining high residual strength.

The Damage Tolerant Design Handbook, however, presently

recommends, that, "the best design policy for handling SCC

is to prevent it, rather than controlling its growth as done

for fatigue cracking” (22).

- 19 -
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Allowable Stress Level

An SCC "threshold stress" is frequently sought as a usetul
characterization parameter for an engineering material,
i.e., the stress level below which SCC will not be
anticipated. The "threshold stress" or "threshold stress
intensity factor"” for SCC is nct an absolute property as is
often implied. Although there may be an apparent threshold
level of stress for the initiation of SCC - as suggested by
various smooth specimen data (Figure 2) - any SCC threshold
determined in the laboratory is test dependent and must be
identified with the controlling conditions such as
environment, length of exposure, size of test specimen,
method of loading, etc. Moreover, it must be described in
terms of a specified probability of failure (low) and

confidence level (high).

It is not advisable [Brown calls it "certain folly" (24)] to
design for a sustained tensile stress just beneath a
threshold stress measured in an accelerated test no matter
how carefully that determination may have been made. A
sizable margin must be allowed because unexpected stresses
from heat treatment, fitup, thermal expansion, and local

stress concentrators usually are present, and one does not

- 20 -




want to run the risk that unknown stresses from such causes

may elevate the effective stress above the anticipated SCC
threshold. Moreover, in the presence of certain crack-like
flaws, stress corrosion cracks may grow at stresses lower
than the apparent threshold stress developed from smooth

specimen results.

CONCLUSIONS

Analyses of service failures of various types are needed in
terms of actual reguirements of the application. These should
be considered in relationship to the relative importance ot
initiation and propagation of SCC, the type of loading and the
design philosophy used for the structure. Learning from such :
experience can be expected to impact on the strategy for

avoiding SCC and the test methodology for material selection and

design.
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TABLE 1. INITIATION SITES OF STRESS CORROSION CRACKS

IN HIGH STRENGTH ALUMINUM ALLOYS
(FROM SPEIDEL REF.

17)

Stress raisers due to design

(bore hole, sharp radius, etc.)
Holes for interference fit pushings
Corrosion pits
Fatigue cracks
Galling, fretting, wear
Intergranular corrosion, exfoliation
Not known

25
15
12

34

TABLE 2. SOURCES OF STRESSES CAUSING PROPAGATION OF

STRESS COPROSION CRACKS IN HIGH STRENGTH
ALUMINUM ALLOYS
(FROM SPEIDEL REF.

17)

pct
pct
pct
pct
pct
pct
pct

Residual stress (from heat treatment and fabrication)

Installation stresses (fit-up stresses, improper

shimming, torque)

Service stresses (amplified due to stress raisers)

Not known

~ 24

40

25
25
10

pct

pct
pct
pct
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Necessary Conditions for Stress-Corrosion Cracking
Figure 1
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Directional Grain Structure of 7075-T651 Hot Rolled Plate

GA 14050
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Days to failure (3.5% NaCl alternate immersion - ASTM G44)

Tests were made on 3.18 mm (0.125 in.) diameter tension specimens machined from the
mid-plane of 7075-TB851 plates of various thicknesses. The solid line, lower bound defines '
the SCC performance of test specimens with different orientation to the grain structure. f
Note the relatively low stress levels at which short transverse specimens failed compared

to the long transverse and longitudinal specimens (Ref. 9).

Effects of the Magnitude of Sustained Tensile Stress and Its Orientation
Relative to the Grain Structure on the SCC Resistance of a Metallurgically
Susceptible Material
Figure 2
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7075 alloy plate 84 mm (2.5 in.) thick
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The metallurgical susceptibility to SCC is significantly iess for the T7351 and T7651-type
tempers. Their improved performance compared to the T851 is indicated by the higher
percent survival curves shown as a function of stress (Ref. 8).

Effect of Temper on SCC Performance of Alloy 7075 Plate Stressed
in the Critical Short Transverse Direction.
Figure 3

- 27 -

+

i

.

2
L]
]




Estimated number of stress corrosion service failures

ORIGIMAL F..: 5
NF POOR QUALITY

800 GA 16543
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@ High-strength aluminum alloys
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A High-strength magnesium alloys
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Year in which failure occurred

Estimated Number of Stress Corrosion Service Failures
of Aerospace Products in Western Europe and North America
from 1960 to 1970 (from Speidel Ref. 17).
Figure 4
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GA 16842

~

Stress-corrosion cracks in the flanges of a spool machined from 2024-T4 rod stock. The
removal of large amounts of stock resulted in transverse residual tensile stress on the

machined surface. This problem would hve been avoided by selection of the stress
relieved T351 temper (Ret. 9).

Example of SCC Caused by Residual Stresses from Quenching
Figure 5
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¢Parting plane

GA 16543

Die forged valve body of 7075-T6 alloy showing SCC at the intersection of the machined
holiow boss with the main chamber. This crack is parallel to the metal flow lines of the
parting plane and, hence, is a short transverse failure.

Example of SCC Caused by Residual Stresses from Quenching
Figure 6
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GA 16543

Swaged 2024-T3

‘Magnification IX
Swaged 2024-0, H.T. to T42

Tubes with swaged ends (20% reduction) of various tempers of 2024 alloy exposed
to 3- 1/2% NaCl solution by alternate immersion for 84 days. SCC can be avoided
simply by using the proper sequence of swaging and tempering. Corrosion products
chemicaily removed after exposure (Ref. 9).

Example of SCC in a 2024-T3 Tube Caused by
Residual Stresses from Fabrication
Figure 7
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"\\ / Transverse direction

Short transverse direclion - vertical
~ Long transverse direction —horizontal

F

Location of machined angle with respect tc
transverse grain flow in thick tee

-Angular mismatch (can aiso happen with parallel gap)

Rigid
member
High assembly stress in short transverse direction

.

% ~ ' ' %"w Rigid member

T J Ll

(A)—Locked in assembly stresses from mismatch

Short transverse direction

Thick plate or bar

Excessive
clearance

High assembly stresses
in short transverse
direction.

Tt et
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(B)—Locked in assembly stresses from excessive clearance

Examples of Short Transverse Tensile Stresses Developed During Assembly
of Thin Sections Machined from Thick Products (Ref. 9). See Also Figure ).
Figure 8
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Location of machined wing plank with respect to
transverse grain flow in thicker extruded section

O

Span
Sealant
Radius
{
Tang
Stress
Corrosion .
Crack Riser

The crack was caused by short transverse stress imposed by assembly mis-match and
corrosion products resulting from exfoliation corrosion of the faying surfaces where
moisture had gained entrance to the gap between the planks (Ref. 14).

Diagram of a Typical Wing Plank Joint Showing the Location of SCC
in the Tang Radius
Figure 9
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Joint 1

Recommended:
e “Butter” with overlay of weld metal, or shot peen edge “a”
e “Butter” terminal edge “'b” in vicinity of welds

t

/7

| Stub length }’

Joint 2
b
Note: Edge “a” could be a sawed
or machined edge or the end of an
extrusion, or any edge of a plate. N
2
Recommended: ‘

® Make stub length at least 1.5t, or ;
e “Butter” with overlay of weld metal, or shot peen edge *‘a” ;
e “Butter” terminal edges “b” in vicinity of welds

Methods of Avoiding SCC Caused by Residual Welding
Stresses Acting in the Short Transverse Direction Across
Exposed Edges (Ref. 9).

Figure 10
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INTRODUCTION

Accelerated stress-corrosion cracking (SCC) tests are a vital
part of materials evaluation for alloy development, selection,
and design. Over the years many testing techniques have been
developed to measure material response to agressive environments
under stress. It is questionable whether any single test method
can provide all of the information desired for a given service
application. Also, the material behavior observed in a labora-
tory accelerated test may not be the same as that occurring in
service over a long exposure period. This report reviews the
mechanical aspects of SCC test techniques and weighs the
advantages of each with the goal of determining some optimum
techniques for characterizing SCC behavior in accelerated tests.
The environmental aspects of SCC testing are discussed in

Section 1V.

A stress corrosion failure can be considered to occur in
sequential stages, although it may not be possible to clearly
separate the stages (l1). First is the relatively slow
initiation (incubation) stage in which corrosion reactions take
place but which do not affect the mechanical properties of the
part (specimen). This is followed by the formation of localized
sites of corrosion attack (fissures) which create stress
concentrations and the establishment of a small number of "well
defined"” cracks. Stable subcritical growth (propagation) of one
of these cracks to a critical size results in mechanical
fracture. Thus, the stress corrosion life of a part or test

specimen is the sum of the initiation and propagation lifetimes,
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as shown schematically in Figure 1. Complete fracture may not

be involved in the SCC failure of some parts or specimens,

depending on the method ot loading and the criterion of failure

(as for example, a cracked and leaking hydraulic line fitting).
A considerable proportion of the time required for the
occurrence of an SCC failure can be involved in the initiation
stage, as shown by the specimen-life curves in Figures 2 and 3.
In other cases, such as constant deformation loaded thick

sections, the propagation time can become dominant.

In general, three approaches are used for SCC testing and
evaluation. The older, traditional approach involves statically
loaded smooth specimens in which both the successive stages of
SCC initiation and propagation occur in the usual manner.

A mechanically accelerated technique introduced in recent years
involves dynamic loading at a constant rate of strain instead of
static loading. The rate of strain increase can alter the
initiation and propagation lifetimes; hence it is not clear
whether initiation or propagation is the dominant test response.
The third testing approach involves mechanical acceleration by
introducing a flaw (crack) in the specimen prior to
environmental expcsure. With this technique only the
propagation stage is considered. This conservative approach is
based on the premise that stress concentrators generally are
present in engineering structures when they are put into
service, and the most significant part of the stress corrosion
life is the propagation stage. The following discussion gives a
more detailed description of the various SCC testing methods and

their relative merits.




SMOOTH SPECIMEN TESTS

l. Static Loading

The traditional method of measuring SCC susceptibility in the
laboratory is by exposing smooth specimens to agressive
environments while stressed by application of a constant load or
constant strain. The true net section stress, however,
increases as the depth of the corrosion fissures increase. This
effect varies with testing conditions, such as type of loading
and distribution of corrosion cracks, as indicated in Figure 4

(4, 5).

The usual testing procedure is to expose to the corrosive

environment, several sets of replicate specimens loaded to
various fractions of the material yield strength. The time to
tailure is determined as a function of the applied stress.

Also, the probability of failure at a particular exposure stress
can be determined as a function of exposure time. Examples of
such data for 7075 alloy plate are given in Figures 5 and 6.
Note in Figure 5 that specimen orientation relative to plate
rolling direction has a significant effect on the performance of

alloy 7075-T6é. For each orientation there appeared to be a

minimum stress below which the specimens were not likely to fail

(threshold stress). It is apparent from Figure 6, however, that

determination of a threshold stress can be influenced by a

number of factors, such as specimen type and size and length of

exposure.
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A variety of smooth specimen types are used in SCC tests,

depending on the product, thickness, and end use. The most
widely used specimens are tension test coupons (ASTM G-49),
C-Rings (ASTM G38), Bent Beams (ASTM G39), and U-Bends (ASTM
G30). The use of these specimens for SCC tests has been
standardized to facilitate test comparisons (8). Direct tension
specimens are simple to test but cannot be used for
short-transverse SCC testing of products less than about 37 mm
(1.5 in.) thick. C-ring specimens can be used for short
transverse tests of section thicknesses as low as 19 mm (0.75
in.). It should be recognized, however, that the SCC lifetime
of a given material can be influenced by the type and size of
specimen (Figure 6) and the method of loading (Figure 7). Thus,
a threshold stress for SCC is not a material property, and any
threshold estimates should be qualified with regard to the test
conditions and the significance level. Such test results,
however, do provide a useful means of ranking material, as in
the ASTM standard for classifying the resistance to SCC of high

strength aluminum alloys, G64-80 (Ref. 8).

2. Dynamic Loading (Constant Extension Rate)

The constant strain rate test is a method for mechanically
accelerating the assessment of susceptibility to SCC. This
technique consists of straining specimens at rates in the range
from 10-8 to 10"4 (in./in)/sec. under controlled environmental
conditions. Susceptipility to SCC can be quantified in terms of

various parameters such as maximum load, energy to fracture, and

reduction in area of elongation (10).
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Generally, a critical strain rate exists for a particular system
where a maximum stress corrosion effect is observed. At this
critical strain rate there is a balance at the crack tip between
detormation, dissolution, film formation and diffusion to
maximize the SCC effect. At very fast strain rates, ductile
fracture takes place before the necessary corrosion reactions
can occur. With strain rates that are very slow, it may be
possible for film repair to take place and reduce the detri-
mental effect of SCC reactions (11, 12). The general behavior
of stress corrosion susceptibility with strain rate is shown in
Figure 8. It has been proposed by Parkins (13) that "... stress
or stress intensity, per se, may be less important than the

strain rates they produce."

WOork done on aluminum alloys by the slow strain rate method has
been confined largely to comparing various alloys in a given
environment and to determining the effect of loading rate on the
SCC susceptibility of these materials. Most of the results
available in the literature, however, cannot be effectively
analyzed to determine whether or not susceptibilities indicated
by this technique are consistent with known effects of certain
metallurgical treatments. Limited tests by Maitra (14) showed
that slow strain rate tests of incrementally aged 2124-T351
alloy plate (increased aging known to increase resistance to
SCC) were in agreement with conventional test results (Figure
9). Loss in fracture eénergy and ductility compared to that in
air were the most sensitive indicators of changes in resistance

to SCC with artificial aging.
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Although the constant strain rate technigue shows promise as a
means of ranking environments and possibly alloys, aaditional

experience is needed to optimize loading rates and criteria of
susceptibility. Moreover it is not clear how the test results

relate to service needs (15).
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PRECRACKED SPECIMEN TESTS

l. Application of Linear Elastic Fracture Mechanics (LEFM)

The third approach to assessing SCC susceptibility is to use
fracture mechuanics type specimens containing an established flaw,
usually a crack formed by fatigue or tensile "pop-in" (16, 17).
The purpose of the precrack is to ensure the initiation of SCC at
a site, i.e., the crack tip, where the LEFM relationships are
valid. Thus, fracture mechanics is applicable only to the pro-
pagation of SCC, as it is assumed that crack nucleii already have
formed. The primary objective in performing SCC tests by this
method is to determine the threshold stress intensity factor
below which SCC will not propagate. Another objective is %o
determine the rate of SCC propagation, da/dt, as a function of
the mechanical driving force, KI' under controlled conditions.

It is generally accepted that in order to fully characterize the
resistance to SCC by this method, it is preferable to obtain the
complete curve of K; vs. da/dt (18). The advantages of this
approach are twofold. First, only one stage (propagation) of
stress corrosion is considered, thus hopetully eliminating the
combined action of all prior stages as a measurement variable.
Second, the aplication of linear elastic fracture mechanics
(LEFM) to cracked bodies allows the stresses and strains near the
crack tip process zone to be determined so long as the SCC occurs
below gross yielding (19). From this information the mechanical
driving force for cracks in many configurations can be quantified
in terms of the stress intensity factor, K, which describes the

magnitude of the elastic stress-strain field surrounding the
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crack tip (20, 21). Thus, at least in theory, direct comparisons
of stress corrosion crack growth in specimens of different
geometries can be made. Also, a designer could conceivably
predict the behavior of a stress corrosion crack in a service
component from laboratory data, knowing the stress intensity

solution for the crack in the component (18).

Precracked specimens are exposed in suitable environments to
p determine the threshold stress intensity factor, KISCC’ to
initiate stress corrosion crack growth at a relatively deep flaw
.. and to measure SCC propagation rates (Figure 10). The threshold
stress intensity can be used to calculate conditions (applied
stress and crack depth) below which crack growth by SCC would not
be expected, or would be negligibly slow in a given environment.
This information could be very useful in design, and along with
the SCC propagation rates, also can be used for ranking
materials. A variety of specimen configurations and loading
i[. methods can be used, as described in detail by Smith and Piper

(22).

Pon—

Tests can be made with either (a) constant applied load, during
which K increases until the crack grows to a critical length and

the specimen fractures, or (b) constant deformation, during which

K decreases as the crack grows to a length where it arrests,

theoretically at KISCC (or Kth 1f LEFM requirements are not

satisfied). Tests also can be made with specially contoured




specimens for which the K remains constant during crack growth.

An example of comparative data from a K-increasing and
K-decreasing tests of 7075-T651 plate is shown in Figure 11.
Most of the SCC velocity vs. stress intensity factor (V—KI) data
available in the literature for aluminum alloys have been
obtained using double cantilever beam (DCB) test spcimens which
were precracked by tension loading to "pop-in" (Figure 10b).

Although good reproducibility of DCB V-K_ data has not been

I
established, it is gencrally accepted that such data enable
alumiinum alloys to be effectively ranked with respect to
resistance to SCC growth (4, 18, 23). Hyatt and Speidel (18),

have suggested that V-K_. data could be used to predict safe lives

I
of components containing small stress corrosion cracks, but if
these data are to be used in this way it is essential that the

validity and accuracy of this procedure is established (19, 21,

24, 25).

There are experimental difficulties in the determination of
threshold stress intensity factors. These difficultis are
associated with the irregularities of initiation and growth of
SCC, and the wedging action of corrosion products (4, 26).
Altnough the actual incubation of SCC is not considered in the
development of the V-K relationship, the initiation stage
nevertheless is involved because it is necessary to develop
intergranular SCC at the tip of the transgranular mechanical flaw

(crack). The initiation time may be so short as to be negligible

for materials with low resistance to SCC, but it can be quite

. e
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long for sCC-resistant materials. The formation of wedges of

solid corrosion products can change the crack tip stress state,
with the result that the actual stress intensity at the crack tip
is higher than that calculated from the remote loading alone.
Unfortunately, the effective K at the crack tip cannot be
determined in the usual test, and since the calculated K is
erroneous under weging conditions, a true K¢y, cannot be readily
determined by this method. Examples of prolonged crack extension
and crack tip stress intensity factor* variation with time are
shown for materials of four different degrees of resistance to
SCC in Figure 12. (26) 1In recognition of the practical
difficulties in estimating threshold stress intensity factors
with bolt loaded DCB tests, more rigorous techniques have been
Proposed via the use of valid plane strain specimens Stressed by

constant load (26, 27).

2. Application of Elastic Plastic Fracture Mechanics (EPFM)

The LEFM approach to SCC testing has provided valuable insight
into environment-assisted crack growth (both SCC and corrosion
fFatigue). However, the application of LEFM is limited to cases
where a crack of substantial dimensions exists in a primarily

elastic stress field. That is, the volume of high sress ahead of

* Calculated from remote loading alone.




a crack in a loaded body (the region of confined plasticity) must
be small relative to the length of the crack and geometric
dimensions. Small cracks in small specimens do not adhere to
these LEFM requirements, and the development of elastic-plastic
fracture mechanics (EPFM) in the last decade has extended the
range of the fracture mechanics approach to cases of more
extensive plasticity. This should better enable the
characterization of the mechanical driving force for small cracks
in small specimens. The development of EPFM was motivated by the
limitations of LEFM, especially with regard to very tough and
ductile materials where very large specimens were needed to
adhere to LEFM requirements. Also, it is gqustionable whether
LEFM requirements are satisfied when testing tough SCC-resistant
materials under high applied loads. The EPFM analogy to K in
LEFM is the J-integral. The crack driving force J was derived
from a contour integral around a crack and was found to be
independent of path even when a significantly large plastic zone
(compared to other characteristic dimensions) exists ahead of the
crack. This enables the determination of J, which is a crack-tip
tield characterizing parameter, to be made from measurements
relatively far from the crack~tip. It has been shown that when
conditions of LEFM are met, (i.e. limited plasticity) J and X are
directly relatable (28). The application of EPFM thus extends
the fracture mechanics approach to cases of large scale yielding
ahead of a short crack. Although EPFM does have limitations
which have not been fully explored, investigators have shown that

the approach yields quite good predictions of crack driving force

even in cases which are theoretically out of the validity range (28).
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Thus, the application of EPFM appears to be quite general

and flexible.

An enticing approach to optimizing SCC testing techniques is to
apply EPFM methodology to breaking load tests of smooth tension
specimens. The use of breaking load tests is a promising new
technique for evaluating SCC damage in statically loaded smooth
specimens by performing tensile tests after various periods of
exposure. This technique has been explored previously but has
not been used to any appreciable extent except to calculate
stress corrosion indexes (29, 30). Recent test results of B. M.
Ponchel at Alcoa Laboratories have suggested practical advantages
for this approach. Figure 13a shows schematically the effect of
applied stress and time on the mean breaking strength after
extended exposure. Conventional percentage failure of replicate
specimens exposed for a critical exposure tiime, tc' can be
calculated from the mean breaking strength of replicate tests.
Also, EPFM can be applied to calculate an effective SCC crack
depth from the breaking load (stress), the material's mechanical
properties, and a geometry-specific solution for the crack

driving force.

Specimens can be removed and tension tested after various
intervals of exposure to assess the rate of growth of SCC flaws,
Figure 13b. Thus, the analysis of breaking load data with
fracture mechanics may provide a quantitative means for tracking
SCC damage with time. Exploitation of fracture mechanics

concepts for use with the breaking load method will be attempted

in Phase II of this contract.
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SUMMARY

Smooth specimen SCC tests provide relative rankings of material
pertormance under a given set of environmental conditions.
Specimen time-to-failure includes both initiation and propagation
stages of SCC, and traditionally the mechanical parameter used to
interpret these data is the applied gross stress. Test results
are dependent on mechanical aspects of the test, such as method
of loading and specimen size, which can have variable effects on
the initiation and propagation lifetimes and can infuence

estimates of a threshold stress.

Mechanical acceleration of SCC can be achieved by dynamic loading
under a constant strain rate. Choice of a critical strain rate,

however, is dependent on the conditions of testing.

The conventional use of precracked specimens to study SCC
propagation involves linear elastic fracture mechanics, which can

provide a quantifiable mechanical crack driving force, K for

II
characterizing crack propagation.

Many technical limitations must be placed on the interpretation
of SCC test data. An LEFM analysis is limited to relatively
large cracks, for example, and can't generally be used to char-

acterize shallow growth in small smooth test specimens. It is

proposed that elastic=-plastic analysis be used to extend the
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fracture mechanics approach to smaller specimens and shallow
cracks. This will be attempted in Phase II of the current
contract by coupling fracture mechanics with a promising new
accelerated test procedure, the breaking load method, which uses
data from tension tests performed on replicate groups of exposed
smooth specimens to rank SCC. It is believed that this approach
can lead to more quantitative SCC characterization, better
understanding of relationships between testing methods and

optimization of test procedures.
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Figure 6
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(b) Stress corrosion cracking performance ratios as

Determination of SCC Resistance of Incrementally Aged 2124-T351 Plate
by Slow Strain Rate and Static Load Testing (Ref. 14).
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A. INTRODUCTION

For stress-corrosion cracking (SCC) to occur, there must be
interaction of appropriate combinations of chemical and
electrochemical conditions in the environment with a specific
metallurgical condition of the metal and a requisite level of
tension stress (l1). Laboratory experiments have shown that mere
traces of water may provide a sufficient environmental condition
to promote SCC in highly stressed specimens of susceptible Al-Mg
(5XXX) and Al-Zn-Mg (7XXX) alloys (2, 3). An example of the
accelerating effect of increasing water content in air on the ScC
growth in highly stressed short transverse specimens of 7075-T651
is illustrated in Figure 1 from the work of Speidel (3). Growth
of SCC in humid air is further accelerated by the usual
contaminants present in the atmosphere at seacoast and inland
industrial sites, as can be seen by a comparison of the plateau
velocities in Figure 2 (4). It is in atmospheric environments
such as these that most cases of SCC occur in the service of

commercial high strength aluminum alloys.

It is generally recognized that environmental variables
can have profound effects, either detrimental or beneficial, on
tendencies of stressed components to crack. Each one or a
combination of these factors can affect both the thermodynamic
and the kinetics of the electrochemical processes that control

SCC. Thus, choice of environmental conditions provide an

important basis for developing accelerated SCC test procedures,




B. SPECIFICITY OF ENVIRONMENT-ALLOY COMBINATIONS

The specificity of environment-alloy combinations makes
general predictions of the expected SCC behavior of alloys
somewhat tentative. Although less uncertainty is involved when
the metallurgical structures and their electrochemical character-
istics are established, the present state-of-the-art does not
provide scientific models for calculating the estimated risks of
material serviceability., Therefore, appropriate stress corrosion
tests are needed; but tests can be misleading if they are not

properly related to the alloy, temper and environment of interest.

The following laboratory experiment illustrates the effect
of alloy chemistry on the SCC behavior in several different
aqueous solutions (1). Highly stressed short transverse specimens
representing three different types of susceptible alloys (based on
typical behavior in a seacoast atmosphere) were exposed in
triplicate to six neutral solutions of one-normal sodium salts.

It can be seen from the bar graphs in Figure 3 that the Al-Cu
alloy (2219-T37) failed only in the sodium chloride solution, and
the Al-Zn-Mg-Cu alloy (7075-T651) failed in both sodium chloride
and sodium bromide, but at least one of the three specimens of the
Al-Zn-Mg alloy (7039-T63) stress corrosion cracked in all of the
solutions. It is noteworthy that there were no failures of the
SCC-resistant 2219-T87 and 7075-T73 specimens. The tendency for

Al-Zn-Mg alloys containing relatively low copper (7079, 0.7% Cu)

or no copper (7039) to be susceptible to SCC in a wide variety of
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mildly corrosive atmospheres is well known from service experience
as well as from laboratory tests (1, 5, 6). Al-zZn-Mg-Cu alloys
with higher copper contents (7075, 1.6% Cu; 7178, 2.0% Cu, 7050,
2.2% Cu) are less vulnerable, and Al-Cu alloys (2XXX) are still
less susceptible. Example of these tendencies are shown in Tables
I and II for smooth tension specimens exposed at various stress

levels to atmospheric environments (7).

The importance of alloy-environment specificity on scC

evaluation will be touched on again in the following sections.

C. FIELD TESTING AND SERVICE ENVIRONMENTS

A field test is one in which a metal specimen is placed in
an environment where conditions simulate those anticipated in the
service of a structure. Typical examples are immersion in
seawater, exposure to the atmosphere at marine or industrial
sites, chemical plant streams, etc. Field tests might be

performed with test coupons or with actual or simulated structural

components.,

The following example illustrates the value, and in some
cases the necessity of €eXposure tests performed in the actual
service environment as an adjunct to laboratory evaluation. 1In
this example, the standard 3.5% NaCl alternate immersion test data
for 2024 and 7075 alloy proved to be of no use in predicting

serviceability of these alloys for handling rocket propellant
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oxidizers such as nitrogen tetroxide and inhibited red fuming
nitric acid (IRFNA) (1). The alternate immersion test had shown
2024-T351 and 7075-T651 to be susceptible to SCC at low short
transverse stresses, whereas 2024-T851 and 7075-T351 were quite
resistant, and these performances were borne out by outdcor field
tests in seacoast and industrial atmospheres. However, in proof
tests with exposures to IRFNA at 74°C (165°F), the actual service
environment, SCC occurred in both tempers of 7075 alloy, and did
not occur in either temper of 2024 alloy (Figure 4). It was

gratifying, however, that there were no inexpected failures with

the 2219-T87 and 6061-T65]1 materials.

D. ACCELERATED TEST MEDIA

For most purposes, it is expected that a short exposure in
an accelerated test will reliably and accurately predict the SCC
performance of an alloy over a long period of service. In order
to meet this prime function of the accelerated test, it is
necessary that the test conditions be selected with due regard to
the service to which the metal will be subjected. An important
requirement of the accelerated test is that it be capable of
duplicating the in-service failure mechanisms when such experience
is available (8). This problem is complicated because it involves
not only the consideration of an appropriate environment, but also
the knowledge of realistic types of mechanical loading and stress
magnitudes, This task can be comnlex in situations for which

there is no past experience.
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Hyatt and Speidel in a major stress corrosion program of the
1960°'s (9) investigated SCC propagation rates for 7075-T651 and
7079-T651 materials under short transverse stress in a wide
variety of chemical environments encountered in aircraft service,
One very significant finding was that the chloride, bromide, and
jodide ions are unique in their ability to accelerate SCC growth
in neutral solutions above and beyond the velocity measured in
distilled water. This is illustrated in Figure 5. None of the
other anions listed showed any tendency to accelerate SCC even
under extreme metallurgical, mechanical and electrochemical
conditions. It is noteworthy that chloride, bromide and iodide
ions also are the unique pitting agents for aluminum alloys and
accelerate crevice and intergranular corrosion. Therefore, it
would be expected that they can influence not only propagation,
but also initiation of stress corrosion cracks. Chloride
solutions historically have been favored for accelerated tests
because sodium chloride is widely distributed in nature, and the
test results are relatable to SCC behavior in natural environ-

ments, particularly where there are strong marine influences.

Hyatt and Speidel (9) also observed sign Zicant SCC growth
rates for 7075-T651 in a variety of off-the-shelf organic
solvents, aircraft flight fuel, engine oil and hydraulic fluids.
These data are shown in Figure 6. It was noted that the plateau
velocities measured in the organic solvents fell within the
scatterband for SCC tests in water. This observation is

consistent with the hypothesis that it is the small water content
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of the commercial solvents which causes SCC. The SCC crack growth
in the flight fuel, engine oil and hydraulic fluids was lower,
although still significant, and was about the same as in moist air
with about 30% relative humidity (refer to Figure 1). It also was
found that halide additions to organic solutions can greatly

accelerate SCC in 7075-T651 and 7079-T651 alloys.

Acceleration of SCC growth by chloride, bromide and iodide
depends in a complex way on metallurgical, mechanical,
electrochemical and other environmental parameters which must be
controlled if a meaningful quantitative SCC test is to be
attempted. For example, Speidel (3, 6) observed that the SCC
velocity for 7075-T651 in water could be increased only by a
factor of four by sodium chloride additions. However, with
7079-T651 alloy, the same change in environment caused a 1000-fold
increase in the SCC plateau velocity, thus showing that the SCC
acceleration by halides also is influenced by metallurgical

(composition) parameters.

The extensive investigations by Hyatt and Speidel (9) and
subsequent studies by Brown, Foley and associates (10-12), in
which SCC in very susceptible alloys such as 7075-T651 and
7079-T651 was measured in terms of crack growth rate, have clearly
demonstrated the importance of a number of parameters that must be
controlled in accelerated SCC evaluation tests. The following
procedures have been shown to be effective ways to accelerate SCC

growth in aqueous halide solutions, with variable results
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depending upon the nature of the test material and the mechanical

techniques:

(a) Increase the anion concentration.

(b) Increase acidity (lower pH).

(c) 1Increase temperature = Especially effective for
Al-Zn-Mg alloys.

(d) Add oxidizer: Simple aeration of the solution, or
addition of oxidants such as hydrogen peroxide
nitrates, chromates - Especially effective for Al-Cu,
Al-Mg and Al-Zn-Mg-Cu alloys.

(e) careful control of applied potential.

Accelerated SCC testing can be very complex, as stated
previously, and for additional clarification it is suggested that
readers study the references listed at the end of this section.

Some of these works contain significant implications regarding

stress corrosion mechanisms. The difficulty of identifying a

single accelerated test medium for all aluminum alloys, or of

even finding the optimum corrodent for a given alloy, can be

illustrated by the following examples taken from Alcoa testing

experience.

-

Although nitrates and sulfates dissolved in water tend to

retard rather than to accelerate SCC, their presence in chloride

PSS
. ¢

environments can produce a synergistic stimulation of

i intergranular corrosion and SCC (13, 14). This effect has been
‘- observed at sites such as in the city of Los Angeles where the
r atmosphere contains a disproportionately high content of NO2

compared to that at Point Judith, RI, and New Kensington, PA (14).




The percent survival data in Figure 7 showing the relatively poor
performance in Los Angeles were obtained with small sized axially
loaded tension specimens which are highly influenced by the
initiation of localized corrosion and SCC, as well as by growth
rate of the SCC. When similar materials were tested with
mechanically precracked double cantilever beam (DCB) specimens in
which only the growth of SCC was monitored (Figure 8), the
performance of the 7075-T7351 material at Los Angeles was not

adversely affected by the NO, contaminant--in fact, the perform-

2
ance at Los Angeles was better than at Point Judith and similar to
that in New Kensington. Thus, assessment of the effects of
environmental chemistry can be markedly influenced by other

factors, such as climatic conditions, the type of test specimen

and the method of measuring damage due to SCC.

The smooth specimen data in Tables I and II inadicate the
difficulty with trying to use a single test such as the 3.5% NaCl
alternate immersion test to characterize the SCC behavior of all
types of alloys. Test results in Table II for the Al-Zn-Mg alloy
X7106-T63 indicate that the boiling 6% NaCl test would be more
realistic for this type of alloy although it does not look
promising for Al-Cu type of alloy (2025). These observations are

in accord with other unpublished Alcoa testing experience.

The ultimate determination of the validity of an accelerated
SCC test medium requires a correlation with the results of service

experience or with the results of appropriate field tests (8),
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Unfortunately, to be meaningful in the instance of some alloys,
exposure in service environments can require many years. A
specific example of the correlation of two accelerated test media
with a service environment .or a copper-free Al-Zn-Mg alloy (7039)
is shown in Figure 9. These data demonstrate that the 4-day
boiling 6% NaCl test relates better to the industrial atmosphere
exposure than either a 90-day or an 180-day exposure to the 3.5%
NaCl alternate immersion test (which with an 180-day test period,
could hardly be considered accelerated). The data also illustrate
that in a service environment the length of exposure required to
demonstrate the SCC behavior of an alloy can require a number of

years, a circumstance which complicates correlation tests.

While it is recognized that the local environment generated
inside a crevice or stress corrosion fissure can be quite
different from the bulk environment, detailed knowledge of
"crack-tip" chemistry and reaction kinetics still is speculative.
Knowledye of this type is required before quantitative predictive

models of SCC performance can be developed.

E. RECOMMENDED TEST MEDIA FOR SPECIFIC ACCELERATED TESTS

Standardization of stress corrosion testing methods in the
United States is in its infancy, with the first standards
published by ASTM being for test specimens, which can be used with
any metal and most environments. These standards are for smooth
specimen tests (G30, G38, G39, G49) (15). The first environmental

standard practice for aluminum alloys were published in 1975 and




that was ASTM G44, "Standard Practice for Alternate Immersion
Stress Corrosion Testing in 3.5% Sodium Chloride Solution" (15).
Then G47 was published in 1976 with specific conditions of
specimen types and exposure periods for two types of aluminum
alloys: Al-Cu (2XXX) with 1.8-7.0% copper, and Al-Zn-Mg-Cu (7XXX)
with 0.4-2.8% copper. Following this in 1980 was G64, "Standard
Classification of the Resistance to Stress-Corrosion Cracking of

High-Strength Aluminum Alloys," based on service experience and
smooth specimen tests made according to ASTM G47. These are the
only widely accepted environmental standards for aluminum alloys

at present., There are some tests, not in use in this country,

prescribed in certain European specifications.

1. Smooth Specimen Tests

a. 3.5% NaCl Alternate Immersion Test (ASTM G44)

This test is specified in G47 for testing high
strength 2XXX and 7XXX (0.4-2.8% Cu) alloy with
standard smooth specimens, but is commonly used as an
all purpose test for other types of aluminum alloys.
It is the accelerated test method most widely used in
the U.S.A. for evaluating the SCC resistance and is
called out in various materials specifications. A
disadvantage of the 3.5% NaCl corrofent is the severe
pitting that develops in certain high strength alloys.
This is particularly a problem with copper-bearing
alloys when tested with specimens of smsll cross-

section. An allowable alternative in G44 for the 3.5%
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NaCl solution is Substitute Ocean Water (without heavy
metals) prepared per ASTM Specification D1141. The
advantage of this corrodent is that it causes less
pitting corrosion than the plain sodium chloride
solution. The ASTM task group (G01.06.91) for Stress
Corrosion Testing Aluminum Alloys is collecting
comparative test data for the two test media. There
are some indications that the Substitute Ocean Water

may not be as aggressive in causing SCC.

Mr. T. S. Humphries of NASA Marshall Space Flight
Center has proposed a more practical alternative for
the Substitute Ocean Water which appeared promising on
the basis of limited tests (16). This new test medium

contains 2.86% sodium chloride and 0.52% magnesium

chloride, the same chloride content as in sea water.

Additional evaluation of this test medium is needed.

Another way to circumvent the pitting problem with
the 3.5% NaCl solution is by the use of optimized
(shorter) exposure periods, such as determined by the

breaking load test method described in the Phase ITI

report of this contract.
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b. Boiling 6% Sodium Chloride (Continuous Immersion)

This rapid (4-day) test is the one most generally
used by U.S.A. aluminum producers to evaluate the SCC
behavior of copper-free 7XXX type aluminum alloys via
conventional smooth specimen test procedures. A sample
of test results favoring this approach are shown in
Table II and Figure 9. An ASTM standard is currently

being drafted for this test medium.

Tests with Fracture Mechanics Type Specimens

At present, there are no standards for test media to be
used with precracked specimens. A periodic moistening
procedure (dropwise application of 3.5% NaCl solution three
times a day) devised by Hyatt (17) as a substitute for the
alternate immersion procedure used for smooth specimen
testing has had some usage by other investigators. This
technique produces considerably more rapid growth of SCC in
both Al-Cu (2024-T351) and Al-Zn-Mg-Cu (7075-T651)
susceptible alloys than continuous immersion in 3.5% NaCl
(Figure 10) (18). A previous NASA contract program carried
out at Alcoa Laboratories (18) showed that the Hyatt
(Boeing) procedure ranked SCC growth of various aluminum
alloys in the same order as exposure in a seacoast
atmosphere (Figures 11 and 12). The ranking in an inland
industrial atmosphere was the same for the alloys except the
sensitized Al-Mg (5456) which showed a marked reduction of

crack growth in the latter environment.
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Corrosion product wedging effects were noted after extended
exposure to the salt solution and the seacoast atmosphere.
In subsequent investigations of high strength Al-Zn-Mg-Cu
alloys (19, 20), exposure to substitute ocaan water by
alternate immersion produced alloy rankings similar to those
in atmospheric exposure with decidedly less evidence of
corrosion product wedging. Possibly the Humphries
NaCl/MgCl2 solutior could also be advantageously used for

these types of tests.

Slow Strain Rate Tests

There are no standards for this new testing approach.
vVarious solutions have been used in additions to plain 3.5%
sodium chloride. Because 3.5% salt solution may not be
aggressive enough for the slow strain rate testing approach,
more corrosive test media considered include oxidant
additions to the sodium ~hloride solution or more acidic
solutions such as aluminum chloride (21, 22). 1In a European
round robin testing program conducted by the EAA Working
pParty (23) using a variety of aluminum alloy types and
several corrodents, found a solution containing 3% NaCl +
0.3% H202 to be the most promising test medium considered
for possible standardization. A second promising solution

was 2% NaCl + 0.5% Na2CrO4, pH3.
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SUMMARY

Traces of water (vapor or liquid) constitute a sufficient
environment to promote SCC of susceptible 5XXX and 7XXx
series alloys, Contaminants in seacoast and inland
industrial (urban} atmospheres may accelerate the sCcC

process in susceptible aluminum alloys.

The halide ions (chloride, bromide and iodide) stimulate

pitting of aluminum and SCC of susceptible alloys,

Chloride solutions historically have been favored for
accelerated SCC tests because sodium chloride is widely

distributed in nature, and the test results are relatable

to SCC behavior in natural environments.

Choice of the appropriate environment for an accelerated scC
test is important, and difficult because of unique
electrochemical interactions involving alloy microstructure

and the many environmental factors that must be controlled.

It is necessary that accelerated SCC test conditions be
selected with due regard to the intended service
application. Thisg consideration is important for alloy

development programs as well as for the purpose of materials

selection.
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The present state-of-the-art does not provide scientific

models for estimating risks of serviceability of alloys and
tempers with regard to sCC. Important information that

still is speculative involves the chemistry at the tip of a

stress corrosion crack.

The ultimate validity of an accelerated SCC test rests on

correlation with service experience or with the results of

appropriate field tests.

standardization of environmental conditions is needed for

specific alloy systems subjected to the various types of SCC

tests.
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Stress intensity, (kg - mm>'?)

GA 18343

105 O 10 20 30 40 50 60 70 80 90 100
T I 1 I | ] | i 1 |
Alloy 7075-T6851
2.5 cm thick plate
-8 Specimen orientation: S-L
10 —  Temperature: 23°C
Humid air
gRJGINAL PAGE 19
2 407 F POOR QuALITY
2
E
2
8
- -8 | Relative
g 10 Humidity (%)
-5 O 100
o5 A 83
° O 7
8§ 40-° o
[} — o 27
o4 Orlyeled> A 17
6 9.8
S 4% 3 5.2
@ v s 23
4 v o8
-
1 0—1 1 p—
10712 | 1 | | | |
0 5 10 15 20 25 30

Stress intensity (MN/m>'2)

Effect of Humidity and Stress Intensity Factor on Stress Corrosion
Crack Velocity of High-Strength Aluminum Alloy 7075-T651

in Air (after Speidel, Ret. 3
Figure 1
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107 T 1 T 1 3
— DCB (no chevron). 1 bolt loaded to pop-in =
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= S-L orientation I
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2 (3 times daily) — 10
10 - o
- — I . Q
£ — - b
c = 25 mm (1 in)/month I _ £
> — -
% _/ Seacoast atmosphere _ _8 ‘5
e 1073 = - (Pt. Judith, R.1) o 1078 §
S — = 2
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x — (Aicoa Technical Center) — x
) [ )
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o Cemns | eve | — (3]
: o :
o o
? | I —~ 109 @
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' ' 1 0—10
1073 — l K¢ - fracture toughness -§
E of test material -
= | | | -
— KTH I | .
| Dry air ! -
| ‘ : (- 0.1% R.H. 21.24°C)
| — 10"
TR [ ! |
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Stress intensity, ksi  ‘in.

No SCC occurred during three years’ exposure to dry air in a desiccator; however, the
“plateau velocity’’ (horizontal part of each curve) and the apparent threshold stress
intensity (Kyy) varied with the environment.

Effect of Corrosive Environment on SCC Propagation Rate in 7079-T651
Plate, 64 mm (2.5 in.) Thick, Stressed in the Short Transverse Direction.
Figure 2
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Short trangverse tensile specimens, stressed 75% yield strength

exposed bv continuous immersion at 85°F
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OF PGOR QUALITY GA 16543

Stress intensity, (kg. mm 3'2)

1)) 20 40 60 80 100 \
1073
I T T L 1 I | i 1 |
Alloy 7079-T651 ’
2.5 cm thick plate ]
4 Specimen orientation: S-L -
10 — Temperature: 23°C
Open circuit
Environment
’g 10-5 ® 3.4 m KCI
Q € 50mKl
-E' A 3.8 m KBr
.3
=
Q
<] -6 |
5 10
>
x .
Q
ﬂ £
b N
c :
[~ !
2 107 - :
&
e Scatterband for 7
-] tests in distilled H,0
D Ead
3 Tests in:
g 408 L 5 m KSCN " 4
by 5m KF P
oo 5 m K,CO, .
0.7 m K,S0,
3 m KNO,
_9 5 m KNO,
10 — 3 m KHCO,
5 m CH,COOK
1 0~1 o ] 1 1 1 -
0 5 10 15 20 25 30 .
Stress intensity, (MN/m%'2) '

Influence of Various Anions on Stress Corrosion Crack Velocity
of a High Strength Aluminum Alloy 7079-T651 Immersed
in Various Aqueous Solutions (after Speidel, Ref. 3).
Figure 5
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Stress intensity (MN-m~3'2)
0 5 10 15 20 25 30
. T 1 T T v |
1 = Alloy 7075-T651
1-in. thick plate (2.5 cm)
Specimen orientation: S-L
Temperature: 73°F (23°C)
0SCC Tests in:  Methanol = 0.05% H,0
10" Ethanol < 0.05% H,0 7
t-Propanol = 0.05% H,0
Butanol = 0.05% H,0
- I-Pentancl - 0.05% H,0
L
f Glycerol
c Acetone < 0.05% H,0 -
~ 4072 F Hexene
= Benzene ~ 0.05% H,0
'g ® SCC Tests in:  Flight fuel K50
> Esso turbo oil 2380
* Hydraulic fluid aerosafe 2300 W -
8 103 | Hydraulic fluid skydrol 500A
Qo
c
o
[}
)
=
o -
o -4 e
ot 10
7.}
o
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n
10°° |-
107 -
1 1 1 1 1
0 50 10 15 20 25 30

Stress intensity (ksi ./in.)

1077

1078

1079

10—-10

10—11

10—12

Stress corrosion crack velocity (cm/sec)

Effect of Flight Fuel K50, Turbo Oil, Hydraulic Fiuids, and Other Organic Liquids
on Stress Corrosion Crack Growth of the Al-Zn-Mg-Cu Alloy 7075-T651
(after Speidel and Hyatt, Ref. 9).

Figure 6
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Comparison of SCC Growth in 7075 Alloy Plate for Various |
; Geographical Locations within the Continental United States ;
i Figure 8 f




T 6 a.nBid
| -218)d POIIOY (1D Z'0-UW €'0-BIN 8'Z-UZ O'P)
9L Pue L91-6E0L AOIlY WNUN|Y jO $}07 BAId 10} UMOUS €1eQ PauIquoD
'SJUBWILIOJIAUT 9DIAIOS UM BIPBJ 1S81 POjeIa|adY JO UONHEB|III0D

1S)] ‘SSaNS 98I9ASURYH JIOYS

S oy 1°1 4] °14 1114 St ot S 0
! A ad T T 0 |
So_u“”ao_ﬁ.:c. sioydsow)e
S — skep goe eiasnpy 4 oz
S skep 062
R I [
h.m “«un sAep o9Vl
oo ~ |
L —
g & - N o o -
<0 / - an
gt g _
e u 3
o N6} 198N %9 e
ujioq c
o / skep ¢ -1 09 <
<
| 8
uoisiawiany shep 081 —
ajeusoye
— 1D®N %G'E A sdep 06 // —o - og
\
| | | ] l i | 1
¢PePL VO




o TR TR R T T e e R R S o T T R e A A

&
S ORIGIMAL F- . \
k- OF POOR G '
-~ 18 GA 10543
g | I | I |
o 2024-T351 7075-T651
0 1.4 I 3-1/2% NaCli (dropwise) s (] —
2 Salt dichromate-acetate’ o A
- 3-1/2% NaC) .
° o -
o 12— —
o *0.6M NaCl + 0.02M Na,Cr,0, +
3 0.07M NaC,H,0, +
8 1.0 HC,H,0, to pH4 _
£
[4]
£ .
: 2 ;
: ° !
i ® 08 - =
i x
& 1)
N S
i 2 04 -
Iz [
; 2
£
’T I 0.2 b
2 g
; 3
w 0.0 @ l
i 0 400 800 1200 1600 2000 2400
g Exposure time, hours y

Environmental Crack Growth in S-L DCB Specimens (Boeing Design) i
Bolt Loaded to Pop-in and Exposed to Various Corrodents. '
Figure 10
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V. CONCLUDING REMARKS

Various mechanical, environmental and applied aspects of SCC
testing are reviewed separately in preceeding sections of this
report, each having its own set of conclusions. A few major
impressions of findings from this review and on state-of-the art

SCC testing of aluminum alloys are given below.

1. There are experimental difficulties associated with each of
the various accelerated SCC testing techniques presently in
use. These difficulties compound the task of characterizing
degrees of susceptibility among alloys with relatively high

resistance to SCC.

2. There is still a need for improved accelerated test
procedures, and preferably ones able to provide gquantitative

data which can be used to assess life of actual parts.

3. It is necessary that accelerated test conditions be selected
with due regard to the service to which the metal will be
subjected. This is an important consideration in testing for

alloy development and material selection.

4. More definitive analyses of in-service applications are needed
so that realistic SCC behavior targets can be set for alloy
development and test methods can be selected to provide the

most directly applicable data.




The present state-of-the-art testing does not provide
scientific models for estimating risks of serviceability of

alloys and tempers with regard to SCC.

A promising new accelerated test technique (the breaking load
method) involving statically loaded smooth tension specimens
permits meaningful statistical treatment cf the test results,
and offers the possibility of new pPractical interpretations of
SCC in terms of modern fracture mechanics concepts. A

detailed description of the approach, its merits, and
experimental results demonstrating advantages of the method are

given in the report on Phase II of this contracted investigation.
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